Satisfiability vs. Finite Satisfiability in Elementary Modal Logics

نویسندگان

  • Jakub Michaliszyn
  • Jan Otop
  • Piotr Witkowski
چکیده

We study elementary modal logics, i.e. modal logic considered over first-order definable classes of frames. The classical semantics of modal logic allows infinite structures, but often practical applications require to restrict our attention to finite structures. Many decidability and undecidability results for the elementary modal logics were proved separately for general satisfiability and for finite satisfiability [11, 12, 16, 17]. In this paper, we show that there is a reason why we must deal with both kinds of satisfiability separately — we prove that there is a universal first-order formula that defines an elementary modal logic with decidable (global) satisfiability problem, but undecidable finite satisfiability problem, and, the other way round, that there is a universal formula that defines an elementary modal logic with decidable finite satisfiability problem, but undecidable general satisfiability problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elementary Modal Logics over Transitive Structures

We show that modal logic over universally first-order definable classes of transitive frames is decidable. More precisely, let K be an arbitrary class of transitive Kripke frames definable by a universal first-order sentence. We show that the global and finite global satisfiability problems of modal logic over K are decidable in NP, regardless of choice of K. We also show that the local satisfi...

متن کامل

On the Complexity of Elementary Modal Logics

Modal logics are widely used in computer science. The complexity of modal satisfiability problems has been investigated since the 1970s, usually proving results on a case-by-case basis. We prove a very general classification for a wide class of relevant logics: Many important subclasses of modal logics can be obtained by restricting the allowed models with first-order Horn formulas. We show tha...

متن کامل

CoLoSS : The Coalgebraic Logic Satisfiability Solver ( System Description ) Georgel Calin

CoLoSS, the Coalgebraic Logic Satisfiability Solver, decides satisfiability of modal formulas in a generic and compositional way. It implements a uniform polynomial space algorithm to decide satisfiability for modal logics that are amenable to coalgebraic semantics. This includes e.g. the logics K, KD, Pauly’s coalition logic, graded modal logic, and probabilistic modal logic. Logics are easily...

متن کامل

The Computational Complexity of the Satisfiability of Modal Horn Clauses for Modal Propositional Logics

This paper presents complexity results about the satisfiability ofmodal Horn clauses for several modal propositional logics. Almost all these results are negative in the sense that restricting the input formula to modal Horn clauses does not decrease the inherent complexity of the satisfiability problem. We first show that, when restricted to modal Horn clauses, the satisfiability problem for a...

متن کامل

The Complexity of Monotone Hybrid Logics over Linear Frames and the Natural Numbers

Hybrid logic with binders is an expressive specification language. Its satisfiability problem is undecidable in general. If frames are restricted to N or general linear orders, then satisfiability is known to be decidable, but of non-elementary complexity. In this paper, we consider monotone hybrid logics (i.e., the Boolean connectives are conjunction and disjunction only) over N and general li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012